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ABSTRACT
We  propose a  constrained, three-dimensional,
nonparametric, entropy-based, coupled, multi-shape

approach to segment subcortical brain structures from
magnetic resonance images (MRI). The proposed method
uses PCA to develop shape models that capture structural
variability. It integrates geometrical relationship between
different structures into the algorithm by coupling them
(limiting their independent deformations). On the other
hand, to allow variations among coupled structures, it
registers each structure separately when building the shape
models. It defines an entropy-based energy function, which
is minimized using quasi-Newton algorithm. To this end,
probability density functions (pdf) are estimated iteratively
using nonparametric Parzen window method. In the
optimization algorithm, constraints are used to improve
segmentation quality. These constraints are extracted from
training data. Sample results are given for the segmentation
of caudate, hippocampus, and putamen, illustrating highly
superior performance of the proposed method compared to
the most similar methods in the literature.

Index Terms— Image segmentation, brain structures,
shape modeling, entropy, nonparametric, constrained
optimization.

1. INTRODUCTION
Medical image segmentation is the most important step in
visualization, surgical guidance and planning, diagnosis and
quantitative measurement [1]. However, many important
structures in medical images do not present a clear boundary
for segmentation and have variations between different
subjects. In addition, imaging methods have limitations such
as low signal-to-noise ratio (SNR), partial volume effects,
and field inhomogeneities [2]. An exciting approach for the
segmentation is based on the optimization of the energy
function using partial differential equations. Kass et al [3]
introduced the first work in this category which has been
improved by others in recent years. For the shape
representation, parametric active contours and geometric
active contours have been used. In the definition of the
energy function, earlier methods wuse the boundary
information for the structures of interest [4]-[5]. Later
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methods wuse regional information such as intensity
histogram (parametric and nonparametric, offline or online)
or variance of an area [6]-[7]. Recent methods benefit from
a priori knowledge about the structures of interest. This
makes the segmentation process robust to the imperfect
image conditions [8]-[9]. For the methods developed based
on the a priori information, a registration process is essential
to integrate the prior model into the segmentation process.

In addition, the anatomical structures in the brain
are related to the neighboring structures through their
location, size, orientation, and shape. An integration of
these relations into the segmentation process improves
accuracy and robustness as shown in [10]-[11]. In this
paper, we extend our previous 3D coupled shape
segmentation method by adding linear constraints on the
optimization process [12]. In some special cases,
segmentation failed because of special conditions of the
image datasets. In these cases, final shape parameters are
not close to typical values. These typical values can be
extracted from training datasets and can be used as
important and powerful constraints in the optimization
process. In the introduced method, we find some bounds for
the shape parameters from the training datasets and use
them as the constraints. To solve the resulting constrained
optimization problem, we use a sequential quadratic
programming (SQP) method. This method solves a
quadratic programming (QP) sub problem in each iteration
using an active set strategy. As in our previous method, we
separate shape and pose variability. This is because
inclusion of both of the pose and shape variability in a PCA
based model generates huge variability and limits the
model’s benefits for segmentation. We align each of the
shape classes in the training datasets individually to extract
co-variations between shape classes without considering
their spatial locations (poses). Furthermore, we use
completely online pdf estimation, updated during iterations
of the optimization algorithm. We use pre-register test
datasets for segmentation.

2. SHAPE MODEL

In many segmentation methods, a shape model is used
where richer models generate more accurate results. Several
shape representation methods are used in the literature that
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are based on the kernel integrals [13] and medial shapes
[14]. More powerful methods for shape representation are
based on distance function, implicit representation, and
relationships among different shapes, including pose,
orientation, and other geometrical relations [15],[16]. In this
paper, we use shape relation and individual transformations
for each structure for segmentation. To extract shape
relation, we apply principal component analysis (PCA) on
the 3D training datasets. To reach accurate results, we
individually align each structure of interest in the training
datasets.

2.1. Alignment

In knowledge based segmentation methods that use shape
variation, alignment is a critical step. It has four important
constituents: a transformation matrix, a metric, an
interpolator, and an optimizer. We use similarity transform
with 7 parameters (1 for scaling, 3 for rotations, and 3 for
translations). For the metric, since we use a labeled 3D
image that represents the desired structure, the cardinality
metric is used. For interpolation of binary images, we use a
nearest neighbor interpolator. For optimization, we use the
Nelder—-Mead (amoeba) method which is a popular direct
search method for minimizing real functions with our
desired property [17]. Using the above methods, we extract
shape variability of the desired structures for model
construction as explained in the following section.

2.2. Implicit Parametric Shape Representation

We use a distance map for shape representation that is zero
on the boundary of a shape and in other points is the
Euclidian distance from the boundary (negative inside,
positive outside). After extraction of the distance maps of
m desired structures for n different training datasets

(l//ik shows the distance map of the kth structure of the

ith dataset), we subtract the mean distance map of each
structure, computed by averaging of the training datasets

(q_)k ), from each of the n signed distance maps to remove
similar parts in different shapes and show them with 1/71.’( .

We use these n xm maps to show variability of different
structures in the training dataset. We collect # column

vectors of size mxN xN xN_and use them to extract
n eigenvectors for each of the m structures and show their
variability (@ ). To allow limited, robust shape variability,
we use ¢ <n eigenvectors to represent each shape. In

addition, to consider pose differences, we add 7 pose
parameters (for local alignment of the structures) to the
shape parameters of each structure. Finally, for each
structure, we may write

_ q
P* [W’pk}(x=y’z):®k (fk’fk’fk )+Z;Wi®:'( (’Ekjk’fk)(l)

where w is the vector of eigenvectors multipliers and ptis
the vector containing 7 transformation parameters for the
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alignment of the kth structure. In this manner, each
structure's pose may change while shape classes co-
variations are used for coupling. In the next section, we
present our proposed entropy-based segmentation method
using the shape model described above.

3. SEGMENTATION OF STRUCTURES
After construction of the shape model and shape classes co-
variations, an energy function is defined for the
segmentation process. In this section, we explain our energy
model and optimization method.

3.1. Energy Model

The proposed entropy-based method classifies image voxels
to distinguish regions by minimizing a weighted sum of the
conditional differential entropies of different structures. To
segment m coupled structures with closed boundaries, there
are m regions for these structures. We set the area outside
of the m structures as m +1 and use this notation
throughout the paper. Based on the entropy of these
regions Q. k=lm+1)> the energy function is defined as

J(Q,,...,Q,,M):|Q|2PQf}(Q,) where |Q| represents the

cardinality of a set Q (number of pixels). When all of the
regions are as uniform as possible, the energy function is at
its minimum. Nevertheless, there is the important problem
of estimating conditional differential entropies.

We estimate the entropy of the kth

|
=% based on several previous publications [11]. In

structure

using H (Q ) = ;lL Inp(7(x),© )dx . In addition, we use

Q

estimation, 5 (/(x),Q )is the

probability density function (pdf) in region k of the 3D
image /. Many researchers estimated pdf's off-line.
However, we observed dissimilar dynamic ranges of image
intensities in different datasets and concluded that an off-
line pdf is suboptimal; we use on-line estimation.

We estimate pdf's using the Parzen window method [18],

entropy approximate

asp(1(x).,Q)= ﬁ K (1(x)-1(x))ax. In this equation, K is
the Gaussian kernel with a standard deviation (sigma) as its
tuning parameter, which sets the resolution of the pdf
estimation process. Choosing low values make pdf
estimation sensitive to noise and high values remove useful
details from the estimated pdf. In the literature, values
between land 3 are used. Finally, we write the energy

function as: J(,,...,Q,  )=J(P)= E_L mnp(7(x).Q )dx.

where P is vector of m x7+¢q parameters (because each
one of the local alignments have 7 parameters).



3.2. Constrained Optimization
In our previous work, we used Quasi-Newton algorithm
with BFGS method for Hessian matrix estimation [12]. In
this paper, we use constrained optimization to transform the
segmentation problem into an easier sub problem that can
then be solved by an iterative process. The Kuhn-Tucker
(KT) equations are the most popular method to solve
constraint methods [19]. If the objective function and
constraints are convex, then KT equations are both
necessary and sufficient for a global solution point. We can
state the general constrained problem as:

C,(P)=0 =l

. m
C,(P)<0

minimize J(P) subject to N ()
where C; shows the ith constraint, m of this constraints are
equality and N-m+1 of them are non-equality. The Kuhn-
Tucker equations can be stated as:

VI(P)+S A VC, (P)=0

i=l

A:ACI.(P*):O i=l-mand C,(P)=0

A =0 N and C,(P)<0 N
where P is a global solution vector. Constraints used in our
problem are lower and upper bounds that can be shown with
non-equality linear constraints. Equation (3) is quadratic
programming sub-problem. To solve it, we used a
sequential quadratic programming where in each major
iteration, the Hessian matrix is updated using BFGS method
as follows.

¢ =V P+ 2,1 NC, (P )~ [w( )- Z/l Ve, (P, )J

HkskskH

Hs,

i=m+l,
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i=1-
P=m+le,
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Where s, =P,
solved using an active set strategy method described in [20].

H

k+1

—Pk. Then, the following problem is

inimi Lty xava(p |
minimize q(x)—fx P ( k) X

VC, (P ) x+C,(P)=0 i=Lwm (5)
va
VC,(P,) x+C, (P )0 i=m+l-N
Finally, we use a line search to find P, =P +ad, . The

gradients can be estimated using numerical methods but
analytical computation is more robust and generates results
that are more accurate. There are two types of parameters

wand p* and for the ith component of V., and Vpk We

compute the derivatives as follows.

Vw . J = ZH} Vw, @ ( lnp (x)- lnﬁml(x))dx

+ﬁjﬂf (ﬁ Vw0 (i)K(](x—ﬁ))dijdx 6)
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VpiJ = <ﬁn Vpid* (x)(Inp, (x)-Inp,., (x))dx
"k [ Ve <*)K<f<x—ﬁ>)dﬁ]dx
e H‘f [pmﬂ( 35 Vp! o (ﬁ)K(I(x—i))dinx

4. EXPERIMENTAL RESULTS

In this section, we present the results of applying the
proposed method to the real MRI data. This data is obtained
from the Internet Brain Segmentation Repository (IBSR)
and used for the training and testing of the proposed method
[21]. Datasets are Tl-weighted volumetric images with
different pixel sizes. Expert physicians have segmented 43
structures for 18 datasets. We define the ROI as 1.05 times
of the smallest cube that covers all of the desired structures
in different training datasets. To evaluate the results, we use
the Dice coefficient [22]. In addition, as an alternative
evaluation measure, we use the segment Hausdorff distance
[23]. For optimization and extraction of the principal
shapes, we use MATLAB [20]. All programs are run on a
3.2 GHz Windows XP workstation with 2 GB RAM. We
use ten datasets (randomly chosen) for training and the
remaining eight datasets for testing of the proposed
segmentation algorithm. We segment each of the left and
right structures individually using the principal shapes
extracted from the training datasets. We also segment the
left and right structures or multiple structures by the
proposed coupling method. To evaluate the proposed
method in comparison to the most similar work in the
literature, we implement and apply the method of Tsai et al
[11] and our previous method [12] which does not apply
any constraints. Evaluation of the results using dice
coefficient and segment Hausdorff distance for the caudate,
hippocampus, and putamen for eight test datasets are shown
in Table 1. we can see that coupling of the left and the right
structures gives better segmentation result and are more
accurate with respect to the segmentation in alone manner
with both of the Dice coefficient and segment Hausdorff
distance measures in almost all cases. Our methods are more
accurate than the Tsai et al’s method in almost all cases,
while the constrained method is the most accurate method in
overall. In Figure 1, sample 3D segmentation results for the
three structures are shown.

5. CONCLUSION
We presented a new method for the segmentation of brain
subcortical structures using their shapes relation extracted
using PCA. We used separate shape class registrations to
extract each class variation independent of the other shape
classes. To this end, we removed variations due to the shape
poses by considering each shape representation locally. In
addition, we allowed independent placements of the shape
models to allow more flexibility. The energy function used
for segmentation took into account entropy of different
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shapes. With an automatic initialization of the structures and
use of the SQP method, a local minimum of the energy
function was found. To achieve accurate results, probability
density functions were calculated in each iteration and
gradients were computed analytically. Our method has low
sensitivity to the parameters and is robust. Experimental
results illustrate robustness and quality of the results
generated by the proposed framework.

)

(b)

()

Fig 1. (a). Final caudates, hippocampus, and putamen segmented

with constraints in the coupled manner (green) compared to the
ideal segmentation (low opacity).

Table 1. Mean Values of Dice coefficients and segment Hausdorff
distances for the segmentation obtained by the Tsai et al [11], our
unconstrained (normal) [12], and constrained method for the
selected structures without and with the coupling information.
Segment Hausdorff]
Distance (mm)

Dice Coefficient

. B . B

Tsai Normal '§ Tsai Normal '§

etal [12] & | etal [12] £

[16] £ | 116) £

@] @]

Caudate Alone [0.55| 0.58 |0.72|5.97| 5.84 |5.53
Coupled [ 0.65] 0.74 ]0.76| 5.82 | 5.46 |5.35
Hippocampus Alone |0.59| 0.61 [0.66]6.29 | 6.30 |6.20
Coupled [ 0.59] 0.62 ]0.70| 6.25 | 6.17 [6.00

Putamen Alone [0.76| 0.81 |0.81|5.17 | 5.02 |5.01
Coupled | 0.78 | 0.82 0.82]5.06 | 4.95 [4.91
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